ON THE RAINBOW CONNECTION OF LINE, MIDDLE, AND TOTAL OF WHEEL

LYRA YULIANTI, MUHARDIANSYAH

Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Andalas, Universitas Andalas, Limau Manis, Padang, Indonesia. email : muhardiansyah97@gmail.com

Abstract. An edge-colored graph G is called rainbow connected if any two vertices in G are connected by a path whose no two its edges are colored the same. The rainbow connection of G, denoted by rc(G), is the smallest number of colors that are needed such as G be a rainbow connected graph. An edge-colored graph G is called strong rainbow connected if any two vertices in G are connected by a geodesic whose no two its edges are colored the same. The strong rainbow connection for G, denoted by src(G), is the smallest number of colors that are needed such as G be a strong rainbow connected graph.

In this paper, we determine rainbow connection number and strong number connectin of line, middle and total of wheel. Received:

Revised: Accepted :

Keywords: rainbow connection number, strong rainbow connection number, wheel graph, line graph, middle graph, and total graph

1. Introduction

The concept of rainbow connection was introduced by Gary Chartrand et al. 2008. For a nontrivial connected graph G and a positive integer k, let $c : E(G) \rightarrow \{1, 2, ..., k\}$ be an edge coloring of G, where the adjacent edges can be colored the same. A path in G is called a rainbow path if no two its edges are colored the same. G is called a rainbow-connected if every two vertices x and y in G, there exists a rainbow x - y path. In this case, the coloring c is a rainbow coloring. If c is a rainbow coloring with k colors are used, then c is a rainbow k-coloring. If kis the smallest number, then k is rainbow connection number rc(G) of G. Clearly $diam(G) \leq rc(G)$, where diam(G) is the diameter of G.

Let c an edge coloring of a nontrivial graph G. For two vertices x and y of G, a rainbow x-y geodesic in G is a x-y rainbow path of length d(x,y). The graph G is called a strongly rainbow-connected if every two vertices x and y in G, there exists a rainbow x-y geodesic. In this case, the coloring c is called a strong rainbow coloring of G. The smallest positive integer k for which G has a strong rainbow k-coloring is the strong rainbow connection number of G, denoted by src(G).

Gary Chartrand et al. [2] provide that if G is a nontrivial connected graph with size m, then

$$diam(G) \le rc(G) \le src(G) \le m$$

In [2] Gary Chartrand et al. determined the rainbow connection number of some classes of graphs.

2. Preliminary Notes

Definition 2.1. The line graph of a graph G, denoted by L(G), is a graph whose vertices are the edges of G, and if $u, v \in E(G)$ then $uv \in E(L(G))$ if u and v share a vertex in G.

Definition 2.2. Let G be a graph with vertex set V(G) and edge set E(G). The middle graph of a graph G, denoted by M(G), is defined as follows. The vertex set of M(G) is $V(G) \cup E(G)$. Two vertices x, y in the vertex set of M(G) are adjacent inM(G) in case one of the following holds:

(1) x, y are in E(G) and x, y are adjacent in G.
(2) x is in V(G), y is in E(G) and x, y are incident in G.

Definition 2.3. Let G be a graph with vertex set V(G) and edge set E(G). The total graph of a graph G, denoted by T(G), is defined as follows. The vertex set of T(G) is $V(G) \cup E(G)$. Two vertices x, y in the vertex set of T(G) are adjacent inT(G) in case one of the following holds:

(1) x, y are in V(G) and x is adjacent to y in G.

(2) x, y are in E(G) and x, y are adjacent in G.

(3) x is in V(G), y is in E(G) and x, y are incident in G.

3. Main Results

The definition of Line Wheel as follows,

$$V(L(W_n)) = \{v_i \mid 1 \le i \le n\} \cup \{w_i \mid 1 \le i \le n\}$$
(3.1)

$$E(L(W_n)) = \{ v_i v_j \mid 1 \le i, j \le n, i \ne j \} \cup \{ v_i w_i \mid 1 \le i \le n \} \\ \{ w_i v_{i+1} \mid 1 \le i \le n, v_{n+1} = v_1 \} \cup \{ w_i w_{i+1} \mid 1 \le i \le n, w_{n+1} = w_1 \}.$$

$$(3.2)$$

The definition of Middle Wheel as follows,

$$V(M(W_n)) = \{u_i \mid 0 \le i \le n\} \cup \{v_i \mid 1 \le i \le n\} \cup \{w_i \mid 1 \le i \le n\}$$
(3.3)

$$E(M(W_n)) = \{u_0v_i \mid 1 \le i \le n\} \cup \{u_iv_i \mid 1 \le i \le n\} \\ \cup \{u_iw_i \mid 1 \le i \le n\} \cup \{w_{i-1}u_i \mid 1 \le i \le n, w_0 = w_n\} \\ \cup \{v_iv_j \mid 1 \le i, j \le n, i \ne j\} \cup \{v_iw_i \mid 1 \le i \le n\} \\ \cup \{w_{i-1}v_i \mid 1 \le i \le n, w_0 = w_n\} \cup \{w_{i-1}w_i \mid 1 \le i \le n, w_0 = w_n\}.$$

$$(3.4)$$

And the definition of Total Wheel as follows

$$V(T(W_n)) = \{u_i \mid 0 \le i \le n\} \cup \{v_i \mid 1 \le i \le n\} \cup \{w_i \mid 1 \le i \le n\}$$
(3.5)

$$E(T(W_n)) = \{u_0 u_i \mid 1 \le i \le n\} \cup \{u_i u_{i+1} \mid 1 \le i \le n, u_{n+1} = u_1\} \\ \cup \{u_0 v_i \mid 1 \le i \le n\} \cup \{u_i v_i \mid 1 \le i \le n\} \\ \cup \{u_i w_i \mid 1 \le i \le n\} \cup \{w_i u_{i+1} \mid 1 \le i \le n, u_{n+1} = u_1\} \\ \cup \{v_i v_j \mid 1 \le i, j \le n, i \ne j\} \cup \{v_i w_i \mid 1 \le i \le n\} \\ \cup \{w_i v_{i+1} \mid 1 \le i \le n, v_{n+1} = v_1\} \cup \{w_i w_{i+1} \mid 1 \le i \le n, w_{n+1} = w_1\}.$$

$$(3.6)$$

.

The following are the diameter of line, middle, and total of wheel for $n \ge 3$.

$$diam(L(W_n)) = \begin{cases} 2, & n = 3, 4\\ 3, & n \ge 5 \end{cases}$$
$$diam(M(W_n)) = \begin{cases} 2, & n = 3\\ 3, & n \ge 4 \end{cases}$$
$$diam(T(W_n)) = \begin{cases} 2, & n = 3, 4\\ 3, & n \ge 5. \end{cases}$$

3.1. Rainbow Connection of Line Wheel

Theorem 3.1. If $n \ge 3$ and $G = L(W_n)$ is line of wheel, then

$$rc(G) = src(G) = \begin{cases} 2, & n = 3, 4\\ 3, & n \ge 5 \end{cases}$$

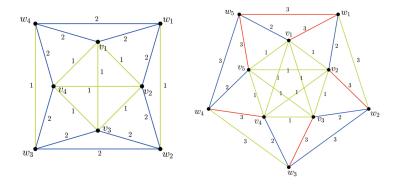


Figure 1. Rainbow coloring of line wheel W_4 line wheel W_5

Proof.

(1) Suppose that n = 3, 4. Since diam(G) = 2, then $rc(G) \ge 2$. Next, it will be shown that $rc(G) \le 2$. Since $c_{11} : E(G) \to \{1, 2\}$ defined by

$$c_{11}(e) = \begin{cases} 1, & e \in \{v_i v_j \mid 1 \le i, j \le n, i \ne j\} \cup \{w_i w_{i+1} \mid 1 \le i \le n-1, i \text{ is odd}\} \\ & \cup \{w_n w_1, n \text{ is odd}\} \\ 2, & e \text{ others} \end{cases}$$

is a rainbow strong coloring, it follows that rc(G) = src(G) = 2 for n = 3, 4.

(2) Suppose that n = 5. Since diam(G) = 2 for n = 5, then $rc(G) \ge 2$ for n = 5. Assume, to the contrary that $rc(G) \le 2$, for n = 5. Let c_{12} is a rainbow 2coloring. Without loss generality, assume that $c_{12}(w_1w_2) = 1$. For $1 \le i \le 5$, there exists w_i, w_{i+1}, w_{i+2} with $w_{n+1} = w_1$ and $w_{n+2} = w_2$ in G which is $w_i - w_{i+2}$ path with length 2 and so, $c_{12}(w_2w_3) = 2$. Since $c_{12}(w_2w_3) = 2$, it follows that $c_{12}(w_3w_4) = 1$. So $c_{12}(w_4w_5) = 2$ and $c_{12}(w_5w_1) = 1$. Since $c_{12}(w_5w_1) = 1$ and $c_{12}(w_1w_2) = 1$, there is no rainbow $w_5 - w_2$ path which is a contradiction. Therefore, $rc(G) \ge 3$.

Next, it will shown that $rc(G) \leq 3$ for n = 5. Let $c_{13} : E(G) \to \{1, 2, 3\}$ is an edge-coloring which is defined as follows

$$c_{13}(e) = \begin{cases} 1, & e \in \{v_i v_j \mid 1 \le i, j \le n, i \ne j\} \cup \{w_n w_1\} \\ 2, & e \in \{w_i v_{i+1} \mid 1 \le i \le n, v_{n+1} = v_1\} \cup \{w_i w_{i+1} \mid 1 \le i \le n, i \text{ is odd}\} \\ 3, & e \text{ others} \end{cases}$$

It's clear that for each two adjacent vertices in G has a rainbow path if each edge of G is colored by c_{13} . For $1 \leq i, j \leq n$ and $a, b \in V(G)$, there exists a rainbow 3-coloring c_{13} such as there exists a rainbow a-b path with $d(a,b) \geq 2$ which are considered as follow.

- (a) w_i, w_{i+1}, w_j if $a = w_i, b = w_j, i < j$ and d(a, b) = 2.
- (b) w_i, v_i, v_j, w_j if $a = w_i, b = w_j$ and d(a, b) > 2.
- (c) v_i, v_j, w_j if $a = v_i$ and $b = w_j$.

Since there exists a rainbow geodesic a - b path for $a, b \in V(G)$, then c_{13} is a strong rainbow 3-coloring. Therefore, rc(G) = src(G) = 3 for n = 5.

(3) Finally, Suppose that n > 5. Since diam(G) = 3 for n > 5, then $rc(G) \ge 3$ for n > 5. Next, it will shown that $rc(G) \le 3$ for n > 5. For $a, b \in V(G)$, there exists a strong rainbow 3-coloring c_{13} such as there exists a rainbow geodesic a - b path Therefore, rc(G) = src(G) = 3 for n > 5.

3.2. Rainbow Connection of Middle Wheel

Theorem 3.2. If $n \ge 3$ and $G = M(W_n)$ is middle of wheel, then

$$rc(G) = \begin{cases} 2, & n = 3\\ 3, & 4 \le n \le 9\\ 4, & n \ge 10 \end{cases}$$

Proof.

(1) Suppose that n = 3. Since diam(G) = 2, then $rc(G) \ge 2$. Next, it will shown that $rc(G) \le 2$. There exists a rainbow 2-coloring $c_{21} : E(G) \to \{1, 2\}$ which is defined as

$$c_{21}(e) = \begin{cases} 1, & e \in \{u_0v_i \mid 1 \le i \le n\} \cup \{u_iw_i \mid 1 \le i \le n\} \cup \{v_iv_j \mid 1 \le i, j \le n, i \ne j\}\\ 2, & e \text{ others.} \end{cases} (3.7)$$

Therefore, rc(G) = 2 for n = 3.

(2) Suppose that $4 \le n \le 9$. Since diam(G) = 3 for $n \ge 4$, then $rc(G) \ge 3$. Let $c_{22}: E(G) \to \{1, 2, 3\}$ is an edge coloring which is defined as follows

$$c_{22}(e) = \begin{cases} 1, & e \in \{u_0v_i \mid 4 \le i \le n\} \cup \{u_iv_i \mid 1 \le i \le 3\} \cup \{u_iw_i \mid 1 \le i \le n\} \cup \\ \{v_iv_j \mid 4 \le i, j \le n, i \ne j)\} \cup \{v_iw_i \mid 1 \le i \le 3\} \cup \\ \{v_iw_{i-1} \mid 1 \le i \le 3, w_0 = w_n\} \\ 2, & e \in \{u_iv_i \mid 4 \le i \le 6\} \cup \{w_iw_{i+1} \mid 1 \le i \le n, w_{n+1} = w_1\} \cup \\ \{v_iw_i \mid 4 \le i \le 6\} \cup \{v_iw_{i-1} \mid 4 \le i \le 6\} \cup \\ \{v_iv_j \mid 1 \le i \le 3, 7 \le j \le n\} \\ 3, & e \text{ others.} \end{cases}$$

For $a, b \in V(G)$ with $d(a, b) \ge 2$, there exists a rainbow 3-coloring c_{22} such as there exists a rainbow a - b path are considered as follows:

- (a) u_i, v_i, v_j, u_j or u_i, w_i, w_{j-1}, w_j where $w_0 = w_n$ if $a = u_i$ and $b = u_j$,
- (b) u_i, v_i, v_j if $a = u_i$ and $b = v_j$,
- (c) u_i, w_j or $u_i, v_j, v_j + 1, w_j$ where $v_{n+1} = v_1$ if $a = u_i$ and $b = w_j$,
- (d) w_i, w_{j-1}, u_j, w_j or w_i, u_i, u_j, w_j if $a = w_i$ and $b = w_j$.

Therefore, rc(G) = 3 for $4 \le n \le 9$.

(3) Suppose that $n \ge 10$. Let H is a subgraph of G, where $V(H) = \{u_i \mid 1 \le i \le n\} \cup \{w_i \mid 1 \le i \le n\} \subset V(G)$ and $E(H) = \{u_i w_i \mid 1 \le i \le n\} \cup \{w_{i-1} u_i \mid 1 \le i \le n, w_0 = w_n\} \cup \{w_{i-1} w_i \mid 1 \le i \le n, w_0 = w_n\} \subset E(G)$. Let $V' = \{v_i \mid 1 \le i \le n\}$ and $E' = \{u_i v_i \mid 1 \le i \le n\}$. Asume, to the contrary that $rc(G) \ge 3$. Let c_{23} is a rainbow 3-coloring in G. So, there exist $x, y \in \{u_i \mid 1 \le i \le n\} \subset V(H)$ and $x', y' \in V'$ such as d(x, y) > 3 in $H, xx', yy' \in E'$, and xx', yy' are assigned the same. Since x, x', y', y is the only x - y path which has d(x, y) = 3 in G, it follows that there is no rainbow x - y path in G, which is a contradiction. Thus $rc(G) \ge 4$.

Next, it will shown that $rc(G) \leq 4$. Let $c_{24} : E(G) \rightarrow \{1, 2, 3, 4\}$ is an edge coloring which is defined as

$$c_{24}(e) = \begin{cases} 1, & e \in \{u_0v_i \mid 1 \le i \le n\} \cup \{v_iv_j \mid 1 \le i, j \le n, i \ne j\} \\ 2, & e \in \{u_iv_i \mid 1 \le i \le n \text{ and } i \text{ is odd}\} \cup \{v_iw_{i-1} \mid 1 \le i \le n, w_0 = w_n\} \\ 3, & e \in \{u_iv_i \mid 2 \le i \le n \text{ and } i \text{ is even}\} \cup \{v_iw_i \mid 1 \le i \le n\} \\ 4, & e \text{ others.} \end{cases}$$

For $a, b \in V(G)$ with $d(a, b) \ge 2$, there exists a rainbow 4-coloring c_{24} such as the rainbow a - b path are considered as follow.

(a) If $a = u_i$ and $b = u_j$

i. $a = u_i, v_i, v_j, w_j, u_j = b$ if i and j are both odd.

- ii. $a = u_i, v_i, v_j, w_{j-1}, v_j = b$ if i and j are both even.
- iii. $a = u_i, v_i, v_j, u_j = b$ if i is odd and j is even or i is even and j is odd.
- (b) u_i, v_i, v_j, w_j or $a = u_i, v_i, v_{j+1}, w_j$ where $v_{n+1} = v_1$ if $a = v_i$ and $b = w_j$. (c) $a = w_i, v_{i+1}, v_j, w_j = b$ if $a = w_i$ and $b = w_j$.

Therefore, rc(G) = 4 for $n \ge 10$.

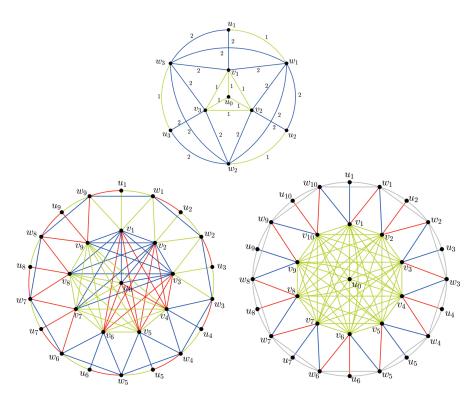


Figure 2. Rainbow coloring of middle wheel W_n , for n = 3, 9, 10.

We defined an edge coloring $c_{25} : E(W_n) \to \{1, 2, \dots, \lceil \frac{n}{3} \rceil\}$ for middle of wheel W_n for $n \ge 4$ as follows.

(1) If $n \mod 3 \neq 1$,

$$c_{25}(e) = \begin{cases} \lceil \frac{i}{3} \rceil, & e \in \{w_{i-1}v_i \mid 1 \le i \le n, w_0 = w_n\} \cup \{u_iv_i \mid 1 \le i \le n\} \cup \\ \{v_iw_i \mid 1 \le i \le n\} \\ f(i), & e \in \{w_{i-1}u_i \mid i \le i \le n, w_0 = w_n\} \cup \{u_iw_i \mid 1 \le i \le n\} \cup \\ \{w_{i-1}w_i \mid 1 \le i \le n, w_0 = w_n\} \\ k, & e \in \{v_iv_j \mid 1 \le i \le n, 1 \le j \le n, i < j\} \cup \{u_0v_j \mid 1 \le j \le n\} \end{cases}$$

(2) If $n \mod 3 = 1$,

$$c_{25}(e) = \begin{cases} \lceil \frac{i}{3} \rceil, & e \in \{w_{i-1}v_i \mid 1 \le i \le n, w_0 = w_n\} \cup \{u_iv_i \mid 1 \le i \le n\} \cup \\ \{v_iw_i \mid 1 \le i \le n\} \\ f(i), & e \in \{w_{i-1}u_i \mid i \le i \le n-1, w_0 = w_n\} \cup \{u_iw_i \mid 1 \le i \le n-1\} \cup \\ \{w_{i-1}w_i \mid 1 \le i \le n-1, w_0 = w_n\} \\ k, & e \in \{v_iv_j \mid 1 \le i \le n, 1 \le j \le n, i < j\} \cup \{u_0v_j \mid 1 \le j \le n\} \\ 2, & e \in \{w_{n-1}u_n, u_nw_n, w_{n-1}w_n\} \end{cases}$$

Where,

$$f(i) = \begin{cases} i, & \text{if } i = 1, 2\\ i \mod 3, & \text{if } i \mod 3 \neq 0\\ 3, & \text{if } i \mod 3 = 0 \end{cases}$$

and k is a number which is assigned to $e = v_i v_j$ where $k \neq c(v_i u_i) \neq c(v_j u_j)$.

Theorem 3.3. If $n \ge 3$ and $G = M(W_n)$ is middle of wheel, then

$$src(G) = \begin{cases} 2, & n = 3\\ 3, & 4 \le n \le 9\\ \lceil n/3 \rceil, & n \ge 10 \end{cases}$$

Proof.

- (1) Suppose that n = 3. Since rc(G) = 2 for n = 3 in theorem 3.2, then $src(G) \ge 2$. Next, it will show that $src(G) \le 2$. Since c_{21} is a strong rainbow 2-coloring which is defined in 3.7, it follows that src(G) = 2 for n = 3.
- (2) Suppose that $4 \le n \le 9$. Since rc(G) = 3 for $4 \le n \le 9$, then $src(G) \ge 3$. Next it will shown that $src(G) \le 3$. Next, to show that $src(G) \le 3$, we provide a strong rainbow 3-coloring which is defined by c_{25} . Therefore, src(G) = 3 for $4 \le n \le 9$.
- (3) Suppose $n \ge 10$. Then there is an integer z such that $3z 2 \le n \le 3z$. Let G consists of an n-cycle $C_n : u_1, u_2, \ldots, u_n, u_1$ and $V^* = \{v_i \mid 1 \le i \le n\}$. First, it will shown that $src(G) \ge z$. Assume, to the contrary, that $src(G) \le z 1$. Let c be a strong rainbow (z 1)-coloring of G. Since d(v) = n + 2 > 3(z 1) for $v \in V^*$ in G, there exists $V' \subseteq V(C_n)$ such that |V'| = 4 and all edges $\{uv \mid u \in V', v \in V^*, u \text{ and } v \text{ are adjacent}\}$ are assigned the same. Thus there exist at least two vertices $x, y \in V'$ such that $d(x, y) \ge 3$ in C_n and d(x, y) = 3 in G. Let $E' = \{u_i v_i \mid 1 \le i \le n\} \subseteq E(G)$. Since x, x', y', y $(xx', yy' \in E')$ is the only x y geodesic in G, it follows that there is no rainbow x y geodesic in G, which is a contradiction. Thus $src(G) \ge z$.

Next, to show that $src(G) \leq z$, we provide a strong rainbow z-coloring which is defined by c_{25} . Therefore, $src(G) = \lceil n/3 \rceil$ for $n \geq 10$.

$24 \quad Lyra \ Yulianti \ and \ Muhardiansyah$

3.3. Rainbow Connection of Total Wheel

Theorem 3.4. If $n \ge 3$ and $G = T(W_n)$ is total of wheel, then

$$rc(G) = \begin{cases} 2, & n = 3, 4\\ 3, & n \ge 5 \end{cases}$$

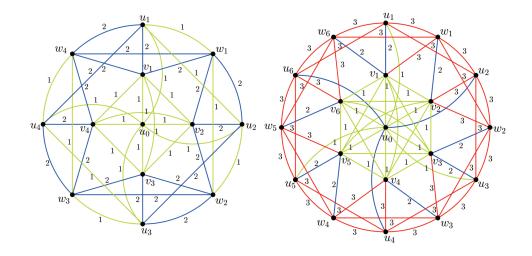


Figure 3. The rainbow coloring of total W_4 and total W_6

Proof.

(1) Suppose that n = 3, 4. Since diam(G) = 2 for n = 3, 4, then $rc(G) \ge 2$. Next, it will shown that $rc(G) \le 2$. Since $c_{31} : E(G) \to \{1, 2\}$ defined by

$$c_{31}(e) = \begin{cases} 1, & e \in \{u_0u_i \mid 1 \le i \le n\} \cup \{u_iu_{i+1} \mid 1 \le i \le n, i \text{ is odd}, u_{i+1} = u_1\} \cup \\ & \{u_0v_i \mid 1 \le i \le n\} \cup \{u_iw_i \mid 1 \le i \le n\} \cup \{v_iv_j \mid 1 \le i, j \le n, i \ne j\} \\ & \cup \{w_iw_{i+1} \mid 1 \le i \le n, i \text{ is odd}, w_{n+1} = w_1\} \end{cases}$$
(3.8)
2, $e \text{ others}$

is a rainbow 2-coloring, it follows that rc(G) = 2 for n = 3, 4.

(2) Suppose that $n \ge 5$. Since diam(G) = 3, then $rc(G) \ge 3$. Next, it will shown that $rc(G) \le 3$. Let $c_{32} : E(G) \to \{1, 2, 3\}$ is a rainbow 3-coloring which is defined by

$$c_{32}(e) = \begin{cases} 1, & e \in \{u_0 u_i \mid 1 \le i \le n, i \text{ is odd}\} \cup \{u_0 v_i \mid 1 \le i \le n\} \cup \\ \{v_i v_j \mid 1 \le i, j \le n, i \ne j\} \\ 2, & e \in \{u_0 u_i \mid 2 \le i \le n, i \text{ is even}\} \cup \{v_i u_i \mid 1 \le i \le n, i \text{ is odd}\} \cup \\ \{v_i w_{i-1} \mid 1 \le i \le n, w_0 = w_n\} \\ 3, & e \text{ others.} \end{cases}$$

For $a, b \in V(G)$, there exists a rainbow 3-coloring c_{32} such as the rainbow a - b path are considered as follow.

(a) If $a = u_i \operatorname{dan} b = u_j$

i. $a = u_i, v_0, v_{j-1}, u_j = b$ if i, j are both odd or i, j are both even. ii. $a = u_i, u_0, u_j = b$ if i is odd and j is even, or i is even and j is odd.

- (b) v_i, v_j, u_j if $a = v_i$ and $b = u_j$.
- (c) u_i, v_i, v_j, w_j or u_i, v_i, v_{j+1}, w_j if $a = u_i$ and $b = w_j$.
- (d) v_i, v_j, w_j if $a = v_i$ and $b = w_j$.
- (e) $a = w_i, v_{i+1}, v_j, w_j = b$ if $a = w_i$ and $b = w_j$.

Therefore, rc(G) = 3 for $rc(G) \ge 5$

We defined an edge coloring $c_{33} : E(W_n) \to \{1, 2, \dots, \lceil \frac{n}{3} \rceil\}$ for middle of wheel W_n for $n \ge 5$ as follows.

• If n is even

$$c_{33}(e) = \begin{cases} \lceil \frac{i}{3} \rceil, \ e \in \{u_0 u_i \mid 1 \le i \le n\} \\ 1, \ e \in \{u_0 v_i \mid 1 \le i \le n\} \cup \{v_i v_j \mid 1 \le i, j \le n, i \ne j\} \cup \{u_i u_{i+1} \mid 1 \le i \le n-1, i \text{ is odd}\} \cup \{u_i w_i \mid 1 \le i \le n-1, i \text{ is odd}\} \\ \cup \{u_i w_i \mid 1 \le i \le n-1, i \text{ is odd}\} \cup \{w_i u_{i+1} \mid 1 \le i \le n-1, i \text{ is odd}\} \\ 2, \ e\{u_i v_i \mid 1 \le i \le n\} \cup \{v_i w_{i-1} \mid 1 \le i \le n, i \ne j, w_o = w_1\} \\ \cup \{u_i u_{i+1} \mid 2 \le i \le n, i \text{ is even}, u_{n+1} = u_1\} \cup \{w_i w_{i+1} \mid 2 \le i \le n, i \text{ is even}, u_{n+1} = u_1\} \\ 2 \le i \le n, i \text{ is even}, w_{n+1} = w_1\} \cup \{u_i w_i \mid 2 \le i \le n, i \text{ is even}, u_{n+1} = u_1\} \\ 3, \ e \text{ others.} \end{cases}$$

• If n is odd

$$c(e) = \begin{cases} \lceil \frac{i}{3} \rceil, \ e \in \{u_0 u_i \mid 1 \le i \le n\} \\ 1, \ e \in \{u_0 v_i \mid 1 \le i \le n\} \cup \{v_i v_j \mid 1 \le i, j \le n, i \ne j\} \cup \{u_i u_{i+1} \mid 1 \le i \le n-2, i \text{ is odd}\} \cup \{u_i w_i \mid 1 \le i \le n-2, i \text{ is odd}\} \\ \cup \{u_i w_i \mid 1 \le i \le n-2, i \text{ is odd}\} \cup \{w_i u_{i+1} \mid 1 \le i \le n-2, i \text{ is odd}\} \\ 2, \ e \in \{u_i v_i \mid 1 \le i \le n\} \cup \{v_i w_{i-1} \mid 1 \le i \le n, i \ne j, w_o = w_1\} \cup \\ \{u_i u_{i+1} \mid 2 \le i \le n-1, i \text{ is even}, u_{n+1} = u_1\} \cup \{w_i w_{i+1} \mid 2 \le i \le n-1, i \text{ is even}, u_{n+1} = u_1\} \\ 2, \ e \text{ others.} \end{cases}$$

Theorem 3.5. If $n \ge 3$ and $G = T(W_n)$ is total of wheel, then

$$src(G) = \begin{cases} 2, & n = 3, 4\\ 3, & 5 \le n \le 9\\ \lceil n/3 \rceil, & n \ge 10 \end{cases}$$

Proof.

- (1) Suppose that n = 3, 4. Since rc(G) = 2 for n = 3, 4 in theorem 3.4, then $src(G) \ge 2$. Next, it will show that $src(G) \le 2$. Since c_{31} is a strong rainbow 2-coloring which is defined in 3.8, it follows that src(G) = 2 for n = 3, 4.
- (2) Suppose that $5 \le n \le 9$. Since rc(G) = 3 for $n \ge 5$ in theorem 3.4, then $src(G) \ge 3$. To show that $src(G) \le 3$, we provide a strong rainbow 3-coloring which is defined by c_{33} . Therefore, src(G) = 3 for $5 \le n \le 7$.
- (3) Suppose that $n \ge 10$. Then there is an integer k such that $3k 2 \le n \le 3k$. Let G consists of an n-cycle $C_n : u_1, u_2, \ldots, u_n, u_1$. First, it will shown that $src(G) \ge k$. Assume, to the contrary, that $src(G) \le k - 1$. Let c_{34} be a strong rainbow (k-1)-coloring of G. Since $d(u_0) = 2n > 3(k-1)$, there exists $V^* \subseteq V(C_n)$ such that $|V^*| = 4$ and all edges $\{uu_0 \mid u \in V^*\}$ are assigned the same. Thus there exist at least two vertices $a, b \in V^*$ such that $d(a, b) \ge 3$ in C_n and d(a, b) = 2 in G. Since a, u_0, b is the only a - b geodesic in G, it follows that there is no rainbow a - b geodesic in G, which is a contradiction. Thus $src(G) \ge k$.

Next, to show that $src(G) \leq k$, we provide a strong rainbow k-coloring which is defined by c_{33} . Therefore, $src(G) = \lceil n/3 \rceil$ for $n \geq 10$.

References

- Bondy, J.A. and U.S.R. Murty. 2000. Graph Theory with Applications. Elsevier Science Publishing Co., Inc., New York.
- [2] Chartrand, G., G. L. Johns, K. A. McKeon, and P. Zhang, Rainbow Connection in Graph. *Mathematica Bohemica* 15 (2006) 85-89.
- [3] Sun, Y., Rainbow Connection Number of Line Graphs, Middle Graphs and Total Graphs. International Journal of Applied Mathematics and Statistics 42 (2013)361-369.