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Abstract. An edge-colored graph G is called rainbow connected if any two vertices in
G are connected by a path whose no two its edges are colored the same. The rainbow

connection of G, denoted by rc(G), is the smallest number of colors that are needed such

as G be a rainbow connected graph. An edge-colored graph G is called strong rainbow
connected if any two vertices in G are connected by a geodesic whose no two its edges

are colored the same. The strong rainbow connection for G, denoted by src(G), is the
smallest number of colors that are needed such as G be a strong rainbow connected

graph.

In this paper, we determine rainbow connection number and strong number connectin
of line, middle and total of wheel.
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1. Introduction

The concept of rainbow connection was introduced by Gary Chartrand et al.

2008. For a nontrivial connected graph G and a positive integer k, let c : E(G)

→ {1, 2, ..., k} be an edge coloring of G, where the adjacent edges can be colored

the same. A path in G is called a rainbow path if no two its edges are colored the

same. G is called a rainbow-connected if every two vertices x and y in G, there

exists a rainbow x − y path. In this case, the coloring c is a rainbow coloring. If

c is a rainbow coloring with k colors are used, then c is a rainbow k-coloring. If k

is the smallest number, then k is rainbow connection number rc(G) of G. Clearly

diam(G) ≤ rc(G), where diam(G) is the diameter of G.

Let c an edge coloring of a nontrivial graph G. For two vertices x and y of G, a

rainbow x−y geodesic in G is a x−y rainbow path of length d(x, y). The graph G is

called a strongly rainbow-connected if every two vertices x and y in G, there exists

a rainbow x − y geodesic. In this case, the coloring c is called a strong rainbow

coloring of G. The smallest positive integer k for which G has a strong rainbow

k-coloring is the strong rainbow connection number of G, denoted by src(G).

Gary Chartrand et al. [2] provide that if G is a nontrivial connected graph with

size m, then

diam(G) ≤ rc(G) ≤ src(G) ≤ m.
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In [2] Gary Chartrand et al. determined the rainbow connection number of some

classes of graphs.

2. Preliminary Notes

Definition 2.1. The line graph of a graph G, denoted by L(G), is a graph whose

vertices are the edges of G, and if u, v ∈ E(G) then uv ∈ E(L(G)) if u and v share

a vertex in G.

Definition 2.2. Let G be a graph with vertex set V (G) and edge set E(G). The

middle graph of a graph G, denoted by M(G), is defined as follows.The vertex set

of M(G) is V (G)∪E(G). Two vertices x, y in the vertex set of M(G) are adjacent

inM(G) in case one of the following holds:

(1) x, y are in E(G) and x, y are adjacent in G.

(2) x is in V (G), y is in E(G) and x, y are incident in G.

Definition 2.3. Let G be a graph with vertex set V (G) and edge set E(G). The

total graph of a graph G, denoted by T (G), is defined as follows.The vertex set of

T (G) is V (G) ∪ E(G). Two vertices x, y in the vertex set of T (G) are adjacent

inT (G) in case one of the following holds:

(1) x, y are in V (G) and x is adjacent to y in G.

(2) x, y are in E(G) and x, y are adjacent in G.

(3) x is in V (G), y is in E(G) and x, y are incident in G.

3. Main Results

The definition of Line Wheel as follows,

V (L(Wn)) = {vi | 1 ≤ i ≤ n} ∪ {wi | 1 ≤ i ≤ n} (3.1)

E(L(Wn)) = {vivj | 1 ≤ i, j ≤ n, i 6= j} ∪ {viwi | 1 ≤ i ≤ n}
{wivi+1 | 1 ≤ i ≤ n, vn+1 = v1} ∪ {wiwi+1 | 1 ≤ i ≤ n,wn+1 = w1}.

(3.2)

The definition of Middle Wheel as follows,

V (M(Wn)) = {ui | 0 ≤ i ≤ n} ∪ {vi | 1 ≤ i ≤ n} ∪ {wi | 1 ≤ i ≤ n} (3.3)

E(M(Wn)) = {u0vi | 1 ≤ i ≤ n} ∪ {uivi | 1 ≤ i ≤ n}
∪ {uiwi | 1 ≤ i ≤ n} ∪ {wi−1ui | 1 ≤ i ≤ n,w0 = wn}
∪ {vivj | 1 ≤ i, j ≤ n, i 6= j} ∪ {viwi | 1 ≤ i ≤ n}
∪ {wi−1vi | 1 ≤ i ≤ n,w0 = wn} ∪ {wi−1wi | 1 ≤ i ≤ n,w0 = wn}.

(3.4)



ON THE RAINBOW CONNECTION OF LINE, MIDDLE, DAN TOTAL FROM WHEEL 19

And the definition of Total Wheel as follows

V (T (Wn)) = {ui | 0 ≤ i ≤ n} ∪ {vi | 1 ≤ i ≤ n} ∪ {wi | 1 ≤ i ≤ n} (3.5)

E(T (Wn)) = {u0ui | 1 ≤ i ≤ n} ∪ {uiui+1 | 1 ≤ i ≤ n, un+1 = u1}
∪ {u0vi | 1 ≤ i ≤ n} ∪ {uivi | 1 ≤ i ≤ n}
∪ {uiwi | 1 ≤ i ≤ n} ∪ {wiui+1 | 1 ≤ i ≤ n, un+1 = u1}
∪ {vivj | 1 ≤ i, j ≤ n, i 6= j} ∪ {viwi | 1 ≤ i ≤ n}
∪ {wivi+1 | 1 ≤ i ≤ n, vn+1 = v1} ∪ {wiwi+1 | 1 ≤ i ≤ n,wn+1 = w1}.

(3.6)

The following are the diameter of line, middle, and total of wheel for n ≥ 3.

diam(L(Wn)) =

{
2, n = 3, 4

3, n ≥ 5

diam(M(Wn)) =

{
2, n = 3

3, n ≥ 4

diam(T (Wn)) =

{
2, n = 3, 4

3, n ≥ 5.

3.1. Rainbow Connection of Line Wheel

Theorem 3.1. If n ≥ 3 and G = L(Wn) is line of wheel, then

rc(G) = src(G) =

{
2, n = 3, 4

3, n ≥ 5

Figure 1. Rainbow coloring of line wheel W4 line wheel W5

Proof.
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(1) Suppose that n = 3, 4. Since diam(G) = 2, then rc(G) ≥ 2. Next, it will be

shown that rc(G) ≤ 2. Since c11 : E(G) → {1, 2} defined by

c11(e) =


1, e ∈ {vivj | 1 ≤ i, j ≤ n, i 6= j} ∪ {wiwi+1 | 1 ≤ i ≤ n− 1, i is odd}

∪{wnw1, n is odd}
2, e others

is a rainbow strong coloring, it follows that rc(G) = src(G) = 2 for n = 3, 4.

(2) Suppose that n = 5. Since diam(G) = 2 for n = 5, then rc(G) ≥ 2 for n = 5.

Assume, to the contrary that rc(G) ≤ 2, for n = 5. Let c12 is a rainbow 2-

coloring. Without loss generality, assume that c12(w1w2) = 1. For 1 ≤ i ≤ 5,

there exists wi, wi+1, wi+2 with wn+1 = w1 and wn+2 = w2 in G which is

wi − wi+2 path with length 2 and so, c12(w2w3) = 2. Since c12(w2w3) = 2,

it follows that c12(w3w4) = 1. So c12(w4w5) = 2 and c12(w5w1) = 1. Since

c12(w5w1) = 1 and c12(w1w2) = 1, there is no rainbow w5 − w2 path which is

a contradiction. Therefore, rc(G) ≥ 3.

Next, it will shown that rc(G) ≤ 3 for n = 5. Let c13 : E(G) → {1, 2, 3} is

an edge-coloring which is defined as follows

c13(e) =


1, e ∈ {vivj | 1 ≤ i, j ≤ n, i 6= j} ∪ {wnw1}
2, e ∈ {wivi+1 | 1 ≤ i ≤ n, vn+1 = v1} ∪ {wiwi+1 | 1 ≤ i ≤ n, i is odd}
3, e others

It’s clear that for each two adjacent vertices in G has a rainbow path if each

edge of G is colored by c13. For 1 ≤ i, j ≤ n and a, b ∈ V (G), there exists a

rainbow 3-coloring c13 such as there exists a rainbow a−b path with d(a, b) ≥ 2

which are considered as follow.

(a) wi, wi+1, wj if a = wi, b = wj , i < j and d(a, b) = 2.

(b) wi, vi, vj , wj if a = wi, b = wj and d(a, b) > 2.

(c) vi, vj , wj if a = vi and b = wj .

Since there exists a rainbow geodesic a − b path for a, b ∈ V (G), then c13 is a

strong rainbow 3-coloring. Therefore, rc(G) = src(G) = 3 for n = 5.

(3) Finaly, Suppose that n > 5. Since diam(G) = 3 for n > 5, then rc(G) ≥ 3 for

n > 5. Next, it will shown that rc(G) ≤ 3 for n > 5. For a, b ∈ V (G), there

exists a strong rainbow 3-coloring c13 such as there exists a rainbow geodesic

a− b path Therefore, rc(G) = src(G) = 3 for n > 5.

3.2. Rainbow Connection of Middle Wheel

Theorem 3.2. If n ≥ 3 and G = M(Wn) is middle of wheel, then

rc(G) =


2, n = 3

3, 4 ≤ n ≤ 9

4, n ≥ 10

Proof.
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(1) Suppose that n = 3. Since diam(G) = 2, then rc(G) ≥ 2. Next, it will shown

that rc(G) ≤ 2. There exists a rainbow 2-coloring c21 : E(G)→ {1, 2} which is

defined as

c21(e) =

{
1, e ∈ {u0vi | 1 ≤ i ≤ n} ∪ {uiwi | 1 ≤ i ≤ n} ∪ {vivj | 1 ≤ i, j ≤ n, i 6= j}
2, e others.

(3.7)

Therefore, rc(G) = 2 for n = 3.

(2) Suppose that 4 ≤ n ≤ 9. Since diam(G) = 3 for n ≥ 4, then rc(G) ≥ 3. Let

c22 : E(G)→ {1, 2, 3} is an edge coloring which is defined as follows

c22(e) =



1, e ∈ {u0vi | 4 ≤ i ≤ n} ∪ {uivi | 1 ≤ i ≤ 3} ∪ {uiwi | 1 ≤ i ≤ n}∪
{vivj | 4 ≤ i, j ≤ n, i 6= j)} ∪ {viwi | 1 ≤ i ≤ 3}∪
{viwi−1 | 1 ≤ i ≤ 3, w0 = wn}

2, e ∈ {uivi | 4 ≤ i ≤ 6} ∪ {wiwi+1 | 1 ≤ i ≤ n,wn+1 = w1}∪
{viwi | 4 ≤ i ≤ 6} ∪ {viwi−1 | 4 ≤ i ≤ 6}∪
{vivj | 1 ≤ i ≤ 3, 7 ≤ j ≤ n}

3, e others.

For a, b ∈ V (G) with d(a, b) ≥ 2, there exists a rainbow 3-coloring c22 such

as there exists a rainbow a− b path are considered as follows:

(a) ui, vi, vj , uj or ui, wi, wj−1, wj where w0 = wn if a = ui and b = uj ,

(b) ui, vi, vj if a = ui and b = vj ,

(c) ui, wi, wj or ui, vi, vj + 1, wj where vn+1 = v1 if a = ui and b = wj ,

(d) wi, wj−1, uj , wj or wi, ui, uj , wj if a = wi and b = wj .

Therefore, rc(G) = 3 for 4 ≤ n ≤ 9.

(3) Suppose that n ≥ 10. Let H is a subgraph of G, where V (H) = {ui | 1 ≤ i ≤
n} ∪ {wi | 1 ≤ i ≤ n} ⊂ V (G) and E(H) = {uiwi | 1 ≤ i ≤ n} ∪ {wi−1ui | 1 ≤
i ≤ n,w0 = wn} ∪ {wi−1wi | 1 ≤ i ≤ n,w0 = wn} ⊂ E(G). Let V ′ = {vi | 1 ≤
i ≤ n} and E′ = {uivi | 1 ≤ i ≤ n}. Asume, to the contrary that rc(G) ≥ 3. Let

c23 is a rainbow 3-coloring in G. So, there exist x, y ∈ {ui | 1 ≤ i ≤ n} ⊂ V (H)

and x′, y′ ∈ V ′ such as d(x, y) > 3 in H, xx′, yy′ ∈ E′, and xx′, yy′ are assigned

the same. Since x, x′, y′, y is the only x− y path which has d(x, y) = 3 in G, it

follows that there is no rainbow x−y path in G, which is a contradiction. Thus

rc(G) ≥ 4.

Next, it will shown that rc(G) ≤ 4. Let c24 : E(G)→ {1, 2, 3, 4} is an edge

coloring which is defined as

c24(e) =


1, e ∈ {u0vi | 1 ≤ i ≤ n} ∪ {vivj | 1 ≤ i, j ≤ n, i 6= j}
2, e ∈ {uivi | 1 ≤ i ≤ n and i is odd} ∪ {viwi−1 | 1 ≤ i ≤ n,w0 = wn}
3, e ∈ {uivi | 2 ≤ i ≤ n and i is even} ∪ {viwi | 1 ≤ i ≤ n}
4, e others.

For a, b ∈ V (G) with d(a, b) ≥ 2, there exists a rainbow 4-coloring c24 such as

the rainbow a− b path are considered as follow.
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(a) If a = ui and b = uj

i. a = ui, vi, vj , wj , uj = b if i and j are both odd.

ii. a = ui, vi, vj , wj−1, vj = b if i and j are both even.

iii. a = ui, vi, vj , uj = b if i is odd and j is even or i is even and j is odd.

(b) ui, vi, vj , wj or a = ui, vi, vj+1, wj where vn+1 = v1 if a = vi and b = wj .

(c) a = wi, vi+1, vj , wj = b if a = wi and b = wj .

Therefore, rc(G) = 4 for n ≥ 10.

Figure 2. Rainbow coloring of middle wheel Wn, for n = 3, 9, 10.

We defined an edge coloring c25 : E(Wn) → {1, 2, . . . , dn3 e} for middle of wheel

Wn for n ≥ 4 as follows.

(1) If n mod 3 6= 1,

c25(e) =



d i3e, e ∈ {wi−1vi | 1 ≤ i ≤ n,w0 = wn} ∪ {uivi | 1 ≤ i ≤ n} ∪
{viwi | 1 ≤ i ≤ n}

f(i), e ∈ {wi−1ui | i ≤ i ≤ n,w0 = wn} ∪ {uiwi | 1 ≤ i ≤ n} ∪
{wi−1wi | 1 ≤ i ≤ n,w0 = wn}

k, e ∈ {vivj | 1 ≤ i ≤ n, 1 ≤ j ≤ n, i < j} ∪ {u0vj | 1 ≤ j ≤ n}
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(2) If n mod 3 = 1,

c25(e) =



d i3e, e ∈ {wi−1vi | 1 ≤ i ≤ n,w0 = wn} ∪ {uivi | 1 ≤ i ≤ n} ∪
{viwi | 1 ≤ i ≤ n}

f(i), e ∈ {wi−1ui | i ≤ i ≤ n− 1, w0 = wn} ∪ {uiwi | 1 ≤ i ≤ n− 1} ∪
{wi−1wi | 1 ≤ i ≤ n− 1, w0 = wn}

k, e ∈ {vivj | 1 ≤ i ≤ n, 1 ≤ j ≤ n, i < j} ∪ {u0vj | 1 ≤ j ≤ n}
2, e ∈ {wn−1un, unwn, wn−1wn}

Where,

f(i) =


i, if i = 1, 2

i mod 3, if i mod 3 6= 0

3, if i mod 3 = 0

and k is a number which is assigned to e = vivj where k 6= c(viui) 6= c(vjuj).

Theorem 3.3. If n ≥ 3 and G = M(Wn) is middle of wheel, then

src(G) =


2, n = 3

3, 4 ≤ n ≤ 9

dn/3e, n ≥ 10

Proof.

(1) Suppose that n = 3. Since rc(G) = 2 for n = 3 in theorem 3.2, then src(G) ≥ 2.

Next, it will show that src(G) ≤ 2. Since c21 is a strong rainbow 2-coloring which

is defined in 3.7, it follows that src(G) = 2 for n = 3.

(2) Suppose that 4 ≤ n ≤ 9. Since rc(G) = 3 for 4 ≤ n ≤ 9, then src(G) ≥ 3.

Next it will shown that src(G) ≤ 3. Next, to show that src(G) ≤ 3, we provide

a strong rainbow 3-coloring which is defined by c25. Therefore, src(G) = 3 for

4 ≤ n ≤ 9.

(3) Suppose n ≥ 10. Then there is an integer z such that 3z − 2 ≤ n ≤ 3z. Let G

consists of an n-cycle Cn : u1, u2, . . . , un, u1 and V ∗ = {vi | 1 ≤ i ≤ n}. First,

it will shown that src(G) ≥ z. Assume, to the contrary, that src(G) ≤ z − 1.

Let c be a strong rainbow (z − 1)-coloring of G. Since d(v) = n + 2 > 3(z − 1)

for v ∈ V ∗ in G, there exists V ′ ⊆ V (Cn) such that |V ′| = 4 and all edges

{uv | u ∈ V ′, v ∈ V ∗, u and v are adjacent} are assigned the same. Thus

there exist at least two vertices x, y ∈ V ′ such that d(x, y) ≥ 3 in Cn and

d(x, y) = 3 in G. Let E′ = {uivi | 1 ≤ i ≤ n} ⊆ E(G). Since x, x′, y′, y

(xx′, yy′ ∈ E′) is the only x − y geodesic in G, it follows that there is no

rainbow x− y geodesic in G, which is a contradiction. Thus src(G) ≥ z.

Next, to show that src(G) ≤ z, we provide a strong rainbow z-coloring

which is defined by c25. Therefore, src(G) = dn/3e for n ≥ 10.
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3.3. Rainbow Connection of Total Wheel

Theorem 3.4. If n ≥ 3 and G = T (Wn) is total of wheel, then

rc(G) =

{
2, n = 3, 4

3, n ≥ 5

Figure 3. The rainbow coloring of total W4 and total W6

Proof.

(1) Suppose that n = 3, 4. Since diam(G) = 2 for n = 3, 4, then rc(G) ≥ 2. Next,

it will shown that rc(G) ≤ 2. Since c31 : E(G)→ {1, 2} defined by

c31(e) =


1, e ∈ {u0ui | 1 ≤ i ≤ n} ∪ {uiui+1 | 1 ≤ i ≤ n, i is odd, ui+1 = u1}∪

{u0vi | 1 ≤ i ≤ n} ∪ {uiwi | 1 ≤ i ≤ n} ∪ {vivj | 1 ≤ i, j ≤ n, i 6= j}
∪{wiwi+1 | 1 ≤ i ≤ n, i is odd, wn+1 = w1}

2, e others

(3.8)

is a rainbow 2-coloring, it follows that rc(G) = 2 for n = 3, 4.

(2) Suppose that n ≥ 5. Since diam(G) = 3, then rc(G) ≥ 3. Next, it will shown

that rc(G) ≤ 3. Let c32 : E(G) → {1, 2, 3} is a rainbow 3-coloring which is

defined by

c32(e) =



1, e ∈ {u0ui | 1 ≤ i ≤ n, i is odd} ∪ {u0vi | 1 ≤ i ≤ n}∪
{vivj | 1 ≤ i, j ≤ n, i 6= j}

2, e ∈ {u0ui | 2 ≤ i ≤ n, i is even} ∪ {viui | 1 ≤ i ≤ n, i is odd}∪
{viwi−1 | 1 ≤ i ≤ n,w0 = wn}

3, e others.
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For a, b ∈ V (G), there exists a rainbow 3-coloring c32 such as the rainbow

a− b path are considered as follow.

(a) If a = ui dan b = uj

i. a = ui, v0, vj−1, uj = b if i, j are both odd or i, j are both even.

ii. a = ui, u0, uj = b if i is odd and j is even, or i is even and j is odd.

(b) vi, vj , uj if a = vi and b = uj .

(c) ui, vi, vj , wj or ui, vi, vj+1, wj if a = ui and b = wj .

(d) vi, vj , wj if a = vi and b = wj .

(e) a = wi, vi+1, vj , wj = b if a = wi and b = wj .

Therefore, rc(G) = 3 for rc(G) ≥ 5

We defined an edge coloring c33 : E(Wn) → {1, 2, . . . , dn3 e} for middle of wheel

Wn for n ≥ 5 as follows.

• If n is even

c33(e) =



d i3e, e ∈ {u0ui | 1 ≤ i ≤ n}
1, e ∈ {u0vi | 1 ≤ i ≤ n} ∪ {vivj | 1 ≤ i, j ≤ n, i 6= j} ∪ {uiui+1 |

1 ≤ i ≤ n− 1, i is odd} ∪ {wiwi+1 | 1 ≤ i ≤ n− 1, i is odd}
∪{uiwi | 1 ≤ i ≤ n− 1, i is odd} ∪ {wiui+1 | 1 ≤ i ≤ n− 1,

i is odd}
2, e{uivi | 1 ≤ i ≤ n} ∪ {viwi−1 | 1 ≤ i ≤ n, i 6= j, wo = w1}

∪{uiui+1 | 2 ≤ i ≤ n, i is even, un+1 = u1} ∪ {wiwi+1 |
2 ≤ i ≤ n, i is even, wn+1 = w1} ∪ {uiwi | 2 ≤ i ≤ n,

i is even} ∪ {wiui+1 | 2 ≤ i ≤ n, i is even, un+1 = u1}
3, e others.

• If n is odd

c(e) =



d i3e, e ∈ {u0ui | 1 ≤ i ≤ n}
1, e ∈ {u0vi | 1 ≤ i ≤ n} ∪ {vivj | 1 ≤ i, j ≤ n, i 6= j} ∪ {uiui+1 |

1 ≤ i ≤ n− 2, i is odd} ∪ {wiwi+1 | 1 ≤ i ≤ n− 2, i is odd}
∪{uiwi | 1 ≤ i ≤ n− 2, i is odd} ∪ {wiui+1 | 1 ≤ i ≤ n− 2,

i is odd}
2, e ∈ {uivi | 1 ≤ i ≤ n} ∪ {viwi−1 | 1 ≤ i ≤ n, i 6= j, wo = w1}∪

{uiui+1 | 2 ≤ i ≤ n− 1, i is even, un+1 = u1} ∪ {wiwi+1 |
2 ≤ i ≤ n− 1, i is even, wn+1 = w1} ∪ {uiwi | 2 ≤ i ≤ n− 1,

i is even} ∪ {wiui+1 | 2 ≤ i ≤ n− 1, i is even, un+1 = u1}
3, e others.
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Theorem 3.5. If n ≥ 3 and G = T (Wn) is total of wheel, then

src(G) =


2, n = 3, 4

3, 5 ≤ n ≤ 9

dn/3e, n ≥ 10

Proof.

(1) Suppose that n = 3, 4. Since rc(G) = 2 for n = 3, 4 in theorem 3.4, then

src(G) ≥ 2. Next, it will show that src(G) ≤ 2. Since c31 is a strong rainbow

2-coloring which is defined in 3.8, it follows that src(G) = 2 for n = 3, 4.

(2) Suppose that 5 ≤ n ≤ 9. Since rc(G) = 3 for n ≥ 5 in theorem 3.4, then

src(G) ≥ 3. To show that src(G) ≤ 3, we provide a strong rainbow 3-coloring

which is defined by c33. Therefore, src(G) = 3 for 5 ≤ n ≤ 7.

(3) Suppose that n ≥ 10. Then there is an integer k such that 3k − 2 ≤ n ≤ 3k.

Let G consists of an n-cycle Cn : u1, u2, . . . , un, u1. First, it will shown that

src(G) ≥ k. Assume, to the contrary, that src(G) ≤ k − 1. Let c34 be a strong

rainbow (k − 1)-coloring of G. Since d(u0) = 2n > 3(k − 1), there exists V ∗ ⊆
V (Cn) such that |V ∗| = 4 and all edges {uu0 | u ∈ V ∗} are assigned the same.

Thus there exist at least two vertices a, b ∈ V ∗ such that d(a, b) ≥ 3 in Cn

and d(a, b) = 2 in G. Since a, u0, b is the only a − b geodesic in G, it follows

that there is no rainbow a − b geodesic in G, which is a contradiction. Thus

src(G) ≥ k.

Next, to show that src(G) ≤ k, we provide a strong rainbow k-coloring

which is defined by c33. Therefore, src(G) = dn/3e for n ≥ 10.
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